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Algorithms & Data Structures Exercise sheet 4 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 24 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Master �eorem. �e following theorem is very useful for running-time analysis of divide-and-
conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the (worst-case)
running time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 <
log2 3, hence T (n) ≤ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤
T (n/2) + 100, so a = 1 and b = 0 = log2 1, hence T (n) ≤ O(log n).

Exercise 4.1 Applying Master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Let T (1) = 1, T (n) = 4T (n/2)+100n for n > 1. Using Master theorem, show that T (n) ≤ O(n2).

b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using Master theorem, show that T (n) ≤ O(n).

c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2 for n > 1. Using Master theorem, show that T (n) ≤
O(n2 log n).

�e following de�nitions are closely related to O-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (Ω-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. Ω(f) is the set
of all functions g : N → R+ such that f ∈ O(g). One o�en writes g ≥ Ω(f) instead of g ∈ Ω(f).



De�nition 2 (Θ-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. Θ(f) is the set
of all functions g : N → R+ such that f ∈ O(g) and g ∈ O(f). One o�en writes g = Θ(f) instead of
g ∈ Θ(f).

Exercise 4.2 Asymptotic notations.

a) Give the (worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.

b) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

c) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Sorting and Searching.

Exercise 4.3 One-Looped Sort (1 point).
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Consider the following pseudocode whose goal is to sort an array A containing n integers.

Algorithm 1 Input: array A[0 . . . n− 1].
i← 0
while i < n do

if i = 0 or A[i] ≥ A[i− 1] then:
i← i + 1

else
swap A[i] and A[i− 1]
i← i− 1

(a) Show the steps of the algorithm on the input A = [10, 20, 30, 40, 50, 25] until termination. Specif-
ically, give the contents of the array A and the value of i a�er each iteration of the while loop.

(b) Explain why the algorithm correctly sorts any input array. Formulate a reasonable loop invariant,
prove it (e.g., using induction), and then conclude using invariant that the algorithm correctly sorts
the array.

Hint: Use the invariant “at the moment when the variable i gets incremented to a new value i = k for
the �rst time, the �rst k elements of the array are sorted in increasing order”.

(c) Give a reasonable running-time upper bound, expressed in O-notation.

Exercise 4.4 Searching for the summit (1 point).

Suppose we are given an array A[1 . . . n] with n unique integers that satis�es the following property.
�ere exists an integer k ∈ [1, n], called the summit index, such that A[1 . . . k] is a strictly increasing
array and A[k . . . n] is a strictly decreasing array. We say an array is valid is if satis�es the above
properties.

(a) Provide an algorithm that �nd this k with worst-case running time O(log n). Give the pseudocode
and give an argument why its worst-case running time is O(log n).

Note: Be careful about edge-cases! It could happen that k = 1 or k = n, and you don’t want to peek
outside of array bounds without taking due care.

(b) Given an integer x, provide an algorithm with running time O(log n) that checks if x appears in the
array of not. Describe the algorithm either in words or pseudocode and argue about its worst-case
running time.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide
both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

3



Algorithm 2
(a) i← 0

while 2i < n do
j ← i
while j < n do

f()
j ← j + 1

i← i + 1

Algorithm 3
(b) i← n

while i > 0 do
j ← 0
f()
while j < n do

f()
k ← j
while k < n do

f()
k ← k + 1

j ← j + 1

i← b i2c
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