
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 17 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 4 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 24 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Master �eorem. �e following theorem is very useful for running-time analysis of divide-and-
conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the (worst-case)
running time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 <
log2 3, hence T (n) ≤ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤
T (n/2) + 100, so a = 1 and b = 0 = log2 1, hence T (n) ≤ O(log n).

Exercise 4.1 Applying Master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Let T (1) = 1, T (n) = 4T (n/2)+100n for n > 1. Using Master theorem, show that T (n) ≤ O(n2).

b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using Master theorem, show that T (n) ≤ O(n).

c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2 for n > 1. Using Master theorem, show that T (n) ≤
O(n2 log n).

�e following de�nitions are closely related to O-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (Ω-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. Ω(f) is the set
of all functions g : N → R+ such that f ∈ O(g). One o�en writes g ≥ Ω(f) instead of g ∈ Ω(f).



De�nition 2 (Θ-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. Θ(f) is the set
of all functions g : N → R+ such that f ∈ O(g) and g ∈ O(f). One o�en writes g = Θ(f) instead of
g ∈ Θ(f).

Exercise 4.2 Asymptotic notations.

a) Give the (worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.

b) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

c) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

Sorting and Searching.

Exercise 4.3 One-Looped Sort (1 point).

2



Consider the following pseudocode whose goal is to sort an array A containing n integers.

Algorithm 1 Input: array A[0 . . . n− 1].
i← 0
while i < n do

if i = 0 or A[i] ≥ A[i− 1] then:
i← i + 1

else
swap A[i] and A[i− 1]
i← i− 1

(a) Show the steps of the algorithm on the input A = [10, 20, 30, 40, 50, 25] until termination. Specif-
ically, give the contents of the array A and the value of i a�er each iteration of the while loop.

(b) Explain why the algorithm correctly sorts any input array. Formulate a reasonable loop invariant,
prove it (e.g., using induction), and then conclude using invariant that the algorithm correctly sorts
the array.

Hint: Use the invariant “at the moment when the variable i gets incremented to a new value i = k for
the �rst time, the �rst k elements of the array are sorted in increasing order”.

(c) Give a reasonable running-time upper bound, expressed in O-notation.

Exercise 4.4 Searching for the summit (1 point).

Suppose we are given an array A[1 . . . n] with n unique integers that satis�es the following property.
�ere exists an integer k ∈ [1, n], called the summit index, such that A[1 . . . k] is a strictly increasing
array and A[k . . . n] is a strictly decreasing array. We say an array is valid is if satis�es the above
properties.

(a) Provide an algorithm that �nd this k with worst-case running time O(log n). Give the pseudocode
and give an argument why its worst-case running time is O(log n).

Note: Be careful about edge-cases! It could happen that k = 1 or k = n, and you don’t want to peek
outside of array bounds without taking due care.

(b) Given an integer x, provide an algorithm with running time O(log n) that checks if x appears in the
array of not. Describe the algorithm either in words or pseudocode and argue about its worst-case
running time.

Exercise 4.5 Counting function calls in loops (cont’d) (1 point).

For each of the following code snippets, compute the number of calls to f as a function of n. Provide
both the exact number of calls and a maximally simpli�ed, tight asymptotic bound in big-O notation.

3



Algorithm 2
(a) i← 0

while 2i < n do
j ← i
while j < n do

f()
j ← j + 1

i← i + 1

Algorithm 3
(b) i← n

while i > 0 do
j ← 0
f()
while j < n do

f()
k ← j
while k < n do

f()
k ← k + 1

j ← j + 1

i← b i2c

4


